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Major improvements have been made to the IBM version of COSMIC/NASTRAN by RPK 
Corporation under contract to IBM Corporation. These improvements will become part of 
COSMIC’S IBM version and will be available in the second quarter of 1989. The first improvement 
is the inclusion of code to take advantage of IBM’s new Vector Facility (VF) on its 3090 machines. 
The remaining improvements are modifications that will benefit all users as a result of the extended 
addressing capability provided by the MVS/XA operating system. These improvements include the 
availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk 
files. Another improvement is the elimination of multiple load modules that have to be loaded for 
every link switch within NASTRAN. The last improvement allows for NASTRAN to execute above 
the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of 
memory for open core and the in-memory data base. 

INTRODUCTION 

Very few changes have been made to the IBM version of COSMIC/NASTRAN in the last few 
years in order to take advantage of new hardware capabilities and new MVSKA operating system 
features. One of IBM’s new hardware capabilities is the Vector Facility that provides significant 
CPU time reductions for programs with vector operations (Reference 1). Use of IBM’s new Vector 
Facility allows NASTRAN to solve larger problems in a much faster manner. Problems that spend 
a large amount of CPU time in symmetric decomposition, matrix multiplication, forwardbackward 
substitution and eigenvalue analysis could greatly benefit from use of the Vector Facility. 
NASTRAN has been modified to take advantage of the Vector Facility in these areas. 

With the release of MVS/XA, IBM allowed users to reference up to 2 giga-bytes of memory in 
a given job step. However, NASTRAN could only run under the 16 mega-byte line because of the 
assembly language code and the memory management design. Of the 16 mega-bytes, the most a user 
could get was about 8 mega-bytes because of the operating system. Although 8 mega-bytes was 
probably acceptable for open core, it was insufficient to contain any in-memory data files. 
NASTRAN has now been modified to allow it to execute above the 16 mega-byte line and this in 
turn allows access to a maximum of 2 giga-bytes of memory. 

With access to 2 giga-bytes of memory, NASTRAN can now have the option of keeping DMAP 
files in memory. These files were previously written to the PRIxx files using BSAM I/O. This in- 
memory capability has been implemented and the implementation automatically allows for the use 
of external files when memory for the in-memory files has been exhausted. The end result of this 
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feature is that job turnaround will be improved because of the reduction of disk YO. 

Lastly, NASTRAN was previously delivered as 16 load modules. One load module was always 
resident. The other 15 load modules were loaded into memory when needed but only one could 
reside in memory at a given time. If a new load module was needed, the current memory-resident 
load module would be deleted and the new load module loaded in its place, Therefore, as NASTRAN 
was processing the job, load modules would be loaded and then deleted to allow for other load 
modules. This resulted in lost time. Though the time that was lost was not appreciable, NASTRAN 
is now designed to eliminate this reloading procedure and all of NASTRAN now remains completely 
in memory. 

EXECUTION TIME OPTIMIZATION CONSIDERATIONS 

There are several considerations that a user should be aware of when trying to setup his NAS- 
TRAN run for optimal execution time. First, a user should be aware of the amount of open core that 
he may need. If open core is not large enough, users may experience severe execution time 
degradation due to possible spilling during decomposition or multiple passes on matrices used in 
matrix multiplication or forward-backward substitution. There is no single formula that may be used 
to determine the amount of open core needed for all cases; however, the following formulas provide 
some rough estimates. 

Size = 6 * (larger of (number of degrees of freedom in the a-set) 
or (number of degrees of freedom in the o-set) ) 

* (number of output cases (e.g., number of loads or number of eigenvalues) ) 

Size = .04 * (square of degrees of freedom in problem) 

The above formulas are crude and should only be used as rough estimates. Users should check all 
symmemc decomposition messages to determine if any spill groups were required and also all 
matrix multiply-add (MPYAD) messages to determine if multiple passes were required. If either 
spill groups or multiple passes were required, then open core should be increased. 

In addition to the amount of open core given to a problem, all problems will benefit from the 
use of the in-memory data base. The size of the in-memory data base is controlled by the REGION 
size given by the user, the memory to be returned to the operating system and the memory to be used 
for open core. The amount of memory to be used by the in-memory data base is computed as follows: 

DB Size = (Region Size) - (Open Core Size) - (Operating System Memory) 
- (NASTRAN Load Size) 

(Note, the size of the NASTRAN load module is approximately 8000k bytes) 

The in-memory data base capability eliminates much of the I/O performed by NASTRAN. This 
results in faster turnaround and faster execution. CPU savings will be of the order of about 5% 
for most problems. 
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USE OF IBM’s VECTOR FACILITY 

The modifications to NASTRAN took advantage of IBM’s new Engineering and Scientific 
Subroutine Library (ESSL) (Reference 4). This library is a set of high performance mathematical 

Efficiency improvements come also from the use of IBM’s new Vector Facility. IBM’s new 
Vector Facility allows programs with vector operations to use vector instructions for faster CPU 
execution (Reference 2). Inherent in the use of vector hardware is the length of the vector(s) to be 
processed. Due to the startup time and other associated overhead that goes with vector processing, 
vectors must be of a certain minimum length before CPU gains can be realized. In some cases where 
the vectors are very short, degradation can occur and longer CPU times can result. In general, vectors 
should have a length of 10 elements or more for real CPU gains to be realized. This is true for the 
majority of problems in NASTRAN. 

I 
I NASTRAN has been optimized for vectorization in the following areas: symmetric decompo- 

mamx multiplication (Reference 3). The gains to be realized to a user are dependent upon the 
i sition, forward-backward substitution, eigenvalue analysis (Givens, Inverse Power and Feer) and 

amount of the total CPU time that is spent in these areas. For most CPU intensive runs, analysis 
shows that these are the areas where most of the CPU time is used. 

I , 

Figure 1 shows improvements that were made on a statics, a normal modes and a frequency 

computer. A decrease of approximately 10% of the total CPU time could be realized if these 
problems were run on an IBM 3090s computer. The vector affinity column gives a measure of how 

vector code, the ability to have larger open core (eliminating multiple passes in matrix multiplication 
and forward-backward substitution) and the use of the in-memory data base (eliminating much of 
the I/O). 

1 

I 

response problem using the optimized version of NASTRAN. The jobs were run on an IBM 3090E 

much of the CPU time was spent in vector computations. Efficiency gains were realized from the 

I 

I 

~ , Depending on the problem characteristics, percentage improvements can vary greatly. There- 
fore, there is no hard and fast rule that users can use to show improvements. However, Figure 2 

figures are given only so the user can have some idea of expected improvements using the Vector 
I 
I 

shows percentages that may be obtained during various matrix operations in NASTRAN. These 

I Facility. 

I USE OF IBM’s EXTENDED ARCHITECTURE (MVSIXA) 

Prior to the release of IBM’s MVS/XA operating system, the MVS operating system was based 
on 24-bit addressing. This meant that any given program could not address more than 2**16 bytes 
or 16 mega-bytes of memory. Of this 16 mega-bytes, approximately 8 mega-bytes were available 
to a program because of the operating system requirements. As software developments proceeded, 
especially in the area of graphics, and as user problems to be solved became larger, it became 
apparent that there was a need for programs to have access to more memory. With the coming of 
MVS/XA, IBM switched to 3 1-bit addressing and this allowed for 2**31 or 2 giga-bytes of memory 
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to be available. Many of the IBM-supplied compilers were modified to take advantage of this and, 
most noticeably for NASTRAN, was the IBM VS Fortran compiler (Reference 5). Users could now 
write programs in Fortran and take full advantage of the 3 1-bit addressing capability (Reference 6). 

The 16 mega-byte line that resulted from 24-bit addressing still exists in a limited sense for 
programs that have assembly language subroutines. Assembly language subroutines that perform 
1/0 functions must execute in 24-bit addressing mode with the possible exception of subroutines that 
use execute channel program instructions (EXCPs) directly. Programs that have assembly language 
I/O must be designed to take this into account. The assembly code and the I/O buffers must reside 
below the 16 mega-byte line. In addition to the I/O considerations, sometimes assembly language 
codes have other 24-bit design dependent considerations that require that they execute in 24-bit 
addressing mode. 

The previous IBM version of NASTRAN had a very small percentage of assembly language 
subroutines (Reference 7). These subroutines were required to allow for dynamic loading of 
NASTRAN load modules, to optimize computationally bound codes, to perform memory manage- 
ment and to provide efficient random access I/O. Because of these codes, NASTRAN required 
modifications to allow it to execute in 3 1 -bit addressing mode. The IBM version of COSMIC/ 
NASTRAN has now been redesigned to take advantage of 31-bit addressing. The new design 
resulted in two load modules. One load module is called NASTRAN and it executes above the 16 
mega-byte line. This load module contains all of the analysis code and is by far the larger module. 
The other load module is called IO and it executes below the 16 mega-byte line. This module does 
all the non-Fortran 1/0 functions required by NASTRAN. Open core and the new in-memory data 
base reside above the 16 mega-byte line. Figure 3 shows this design. 

New assembly language programs were created to allow for this design. The main program in 
the NASTRAN load module is the assembly language program NASTRAN. The main program in 
the IO load module is the assembly language program IO. The functions of the NASTRAN assembly 
language program are given below: 

1. Reads and processes the job step parm. The format of the job parm has been changed and 
will be described below. 

2. Initializes the Fortran run-time environment. The job parm is also passed by NASTRAN to 
Fortran during initialization to allow users the ability to take advantage of the new Fortran 
job parms that became available with Fortran Version 2. One such Fortran parameter that 
is recommended for use is the “NOXUFLOW” parameter that suppresses a program 
interrupt from a floating point underflow and allows for a hardware fixup instead of a 
software fixup. 

3. Performs memory management. The REGION value as given on the job step EXEC card 
specifies the maximum amount of memory that NASTRAN can obtain. All memory that is 
available after the loading of the program is obtained. Memory is then released for the 
operating system use and the remaining memory is used by NASTRAN for open core and 
the in-memory data base. 

4. Loads the IO load module and initializes the interface between the two. This allows for 
communication to all I/O subroutines that must reside below the 16 mega-byte line. 
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The IO program provides all of the non-Fortran VO for the NASTRAN data files. 

The job step parm has been modified for this new level of NASTRAN. The format is as follows: 

// EXEC PGM=NASTRAN, 
// PARM=’NOXUFLOW,OSMEM=200K,OCMEM=7~K,DBMEM=100000K’ 

The parameters are defined as follows: 

NOXUFLOW 
OSMEM 
OCMEM 
DBMEM 

Parameter to Fortran to suspend underflow interceptions. 
Amount of memory to free back to the operating system. 
Amount of memory to allocate for open core. 
Amount of memory to allocate for the in-memory data base. A non-zero 
value implies that memory is to be allocated for the in-memory data base. 
A zero value eliminates the use of the in-memory data base. 

The last three parameters determine how memory is to be allocated during the run. NASTRAN 
f i s t  obtains all memory available based on the job step REGION value. It will then release back to 
the operating system the amount of memory as specified on the OSMEM parameter. The memory 
that remains will all be given to open core if DBMEM=O. Otherwise, the amount of memory as 
specified by the OCMEM parameter is designated for open core and all that remains is used for the 
in-memory data base. If the memory for the in-memory data base is greater than that specified on 
DBMEM parameter, the larger value is used. If there is a lesser amount of memory available than 
that specified on the DBMEM parameter, then the lesser amount is designated. If there is only 
sufficient memory for open core, then no memory is allocated for the in-memory data base regardless 
of the value of DBMEM. 

NASTRAN prints a summary of the load addresses and the memory allocations at the beginning 
of the NASTRAN log file. A sample listing is shown in Figure 4. 

IN-MEMORY DATA BASE 

The in-memory data base will benefit users in job throughput and to a limited sense in CPU 
utilization. Job throughput will increase because of the elimination of 110 to disk. The CPU savings 
will be of the order of 5%. The in-memory data base is based on blocks of memory that are chained 
together. There is one chain for free space. The block sizes in the free chain will vary. There is also 
one chain for each DMAP file. Each DMAP file is a file in the in-memory data base. The size of 
the blocks allocated for the DMAP files is based upon the size specified for the NASTRAN GIN0 
files. Blocks of memory are allocated for a DMAP file as the file is written and pointers are 
maintained as to the current block being processed. Memory that is available for allocation of the 
blocks is maintained by the free chain. As files are opened for write with rewind, the previously 
allocated memory data blocks to a DMAP file are released back into the free chain and a new DMAP 
file chain is established. Savings are realized because there is no I/O taking place and also there is 
no moving of data. All data being written into the DMAP file are written directly into the allocated 
memory block with no secondary transfer of data. 
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The in-memory data base is designed so that when there is insufficient memory for additional 
blocks of an existing DMAP file or for the creation of a new file, the external PRIxx, SECxx and 
TERxx files are used as spill. Users should be aware that the PRIxx, SECxx and TERxx DD cards 
are still needed, however the space allocations may need to be adjusted based on the amount of 
memory provided for the in-memory data base. 

A directory of the in-memory data base is provided when DIAG 2 is turned on. The directory 
comes out after each DMAP module execution. Use of this DIAG is not recommended because of 
the large amounts of printout that it may generate. Users may opt to use the following technique to 
turn on DIAG 2 in order to get the in-memory data base directory at a specific point in the DMAP. 

ALTER n $ 
PARAM//*DIAG*//2 $ 
ALTER n + l $  
PARAM//*DIAGOFF*//2 $ 
ENDALTER $ 

where n is a DMAP instruction number. 

A sample printout of the in-memory data base is given in Figure 5. The unit number defines the 
unit number allocated to the DMAP file in the NASTRAN File Allocation Table (FIAT) and will 
be used as the “xx’ ’ value to determine which PRIxx file is to be used for spill. The name field gives 
the DMAP file name and the current number defines the current block at which the file is positioned. 
For files that are closed with rewind, this value will be zero. For files that are closed without rewind, 
this value will be the last block that was either read (file opened for read) or was written (file opened 
for write). The in-mem blocks value defines the number of blocks allocated in the in-memory data 
base to the DMAP file and the disk blocks value defines the number of blocks that could not be 
contained in memory and were written to the PRIxx external file. The trailer values are the matrix 
trailers associated with the DMAP file. 

CONCLUDING REMARKS 

The IBM version of COSMIC/NASTRAN has been enhanced to take advantage of IBM’s 
Vector Facility and the extended addressing capability provided by IBM’s MVSKA operating 
system. The enhancements include modifications to subroutines that can take advantage of the 
Vector Facility, modifications to allow NASTRAN to execute above the 16 mega-byte line and 
modifications to allow for a new in-memory data base. When all of the above features are used, users 
will be pleased at the performance increase. In addition, these modifications open up the door for 
larger problems to be analyzed on IBM that were previously not practical because of CPU 
requirements and/or open core requirements. 
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TYPE OF 
PROBLEM 

Statics 
Normal Modes 
Freq. Resp. 

Figure 1 .  Samples of Improvements in CPU Utilitzation 
(Problems executed on IBM 3090E computer) 

SCALAR VECTOR VECTOR VECTOR CPU/ 
G-SET A-SET CPU CPU AFFINITY SCALAR CPU 

(Sec.) (Sec.) (Sec.) 

28828 11426 1264.3 672.3 520.2 53% 
8946 225 634.9 382.6 205.8 60% 
3852 3614 584.7 390.2 281.0 67 % 

. 

MATRIX OPERATION 

Symmetric Decomposition 

Forward-Backward Substitution 

Matrix Multiply-Add Method 1 

Matrix Multiply-Add Method 2 

Mamx Multiply-Add Method 3 

VECTOR CPU / SCALAR CPU 

45% 

33% 

72% 

53% 

20% 

Figure 2. Improvements in Matrix Computations 
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Relative Memory Address 0 

IO Load Module 

Memory for OS 
16 Mega-Byte Line 

NASTRAN Load Module 

Open Core 

In-Memory Data Base 

Memory for OS 

Figure 3. Memory Layout for IBM NASTRAN 

ADDRESS OF BEGINNING OF NASTRAN LOAD MODULE = 04A009BO HEX 
ADDRESS OF END OF NASTRAN LOAD MODULE = 0514D000 HEX 
ADDRESS OF BEGINNING OF IO LOAD MODULE = 8000CF30 HEX 

ADDRESS OF MEMORY OBTAINED 
LENGTH OF MEMORY OBTAINED 

= 0514D000 HEX 
= OD17F000 HEX 219672576 DEC 

MEMORY TO FREE FOR OS = 00032000 HEX 204800 DEC 
MEMORY TO USE FOR OPENCORE = 005DC000 HEX 6144000 DEC 
MEMORY TO USE FOR IN-MEM DATA BASE = OCB70FF8 HEX 213323768 DEC 

ADDRESS OF BEGINNING OF OPENCORE = 0514D000 HEX 
ADDRESS OF END OF OPENCORE = 05729000 HEX 
ADDRESS OF BEGINNING OF IN-MEM. DATA BASE = 05729008 HEX 
ADDRESS OF END OF IN-MEM. DATA BASE = 12299FF8 HEX 

(NOTE: ALL UNITS ABOVE ARE IN BYTES) 

Figure 4. Example of NASTRAN Printed Summary on Log File 
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MEMORY DATA BASE DIRECTORY 
MAXIMUM ENTRIES= 100 CURRENT ENTRIES= 33 

UNIT NAME CURRENT IN-MEM DISK 
NUMBER BLOCKS BLOCKS 

1 20 PHIG 
2 6 SIP 
3 22 SCRATCH1 
4 9 CASECC 
5 4 BGPDP 
6 5 SCRATCH2 
7 14 QG 
8 12 KGGX 
9 10 MI 

10 19 MPTA 
11 18 SCRATCH6 
12 17 OEIGS 
13 7 GPL 
14 11 OPHIG 
15 13 CSTM 
16 8 EQEXIN 
17 15 BGPDT 
18 16 SIL 
19 27 EST 
20 29 GPECT 
21 30 SCRATCH6 
22 32 MDICT 
23 23 LAMA 
24 21 SCRATCH3 
25 28 SCRATCH8 
26 33 GO 
27 34 USET 
28 35 KFF 
29 36 KFS 
30 24 PHIA 
31 25 SCRATCH4 
32 26 SCRATCH5 
33 31 USETD 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

41 
1 
1 
1 
2 

39 
3 

406 
1 
1 

26 
1 
2 
3 
1 
2 
2 
1 

10 
33 
41 

3 
1 

29 
14 

440 
3 

32 1 
15 
2 
2 
2 
3 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

14 8946 
0 0  
1 8946 
1 1 

1491 0 
14 8754 
0 0  

8946 8946 
14 14 

32768 128 
225 225 

14 225 
1491 0 

0 8512 
1491 2 
1491 0 
1491 0 
1491 8946 
560 0 

82 1491 
14 8946 
2 0  

225 0 
14 4197 

225 225 
225 3972 

0 8946 
4197 4197 
4557 4197 

14 225 
14 192 
14 225 
0 0  

TOTAL IN-MEMORY BLOCKS = 1453 
0 TOTAL DISK BLOCKS - - 

TOTAL FREE SPACE IN WORDS = 48508896 
NUMBER OF BLOCKS IN FREE SPACE CHAIN = 2585 

TRAILER 

2 
0 
2 

279 
0 
2 
0 
6 
1 
0 
6 
2 
0 
0 
0 
0 
0 
0 
0 
6 
2 
0 
0 
2 
4 
2 
0 
6 
2 
2 
2 
2 
0 

2 8778 4906 
0 0  0 
1 192 214 
0 0  0 
0 0  0 
2 8394 4794 
0 0  0 
2 486 75 
2 281oooO 
0 0  0 
2 450 loo00 
2 450 10000 
0 0  0 
0 0  0 
0 0  0 
0 0  0 
0 0  0 
0 0  0 
6 1024 0 

120 0 0 
2 8778 4906 
0 0  0 
0 0  0 
2 8394 loo00 
2 450 5022 
2 7944 loo00 

2039 0 0 
2 486 330 
2 228 10 
2 450 loo00 
2 384 loo00 
2 450 loo00 
0 0  0 

Figure 5. Example of In-Memory Data Base Directory 
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